High-Precision Privacy-Preserving Real-Valued Function Evaluation

نویسندگان

  • Christina Boura
  • Ilaria Chillotti
  • Nicolas Gama
  • Dimitar Jetchev
  • Stanislav Peceny
  • Alexander Petric
چکیده

We propose a novel multi-party computation protocol for evaluating continuous real-valued functions with high numerical precision. Our method is based on approximations with Fourier series and uses at most two rounds of communication during the online phase. For the offline phase, we propose a trusted-dealer and honest-but-curious aided solution, respectively. We apply our algorithm to train a logistic regression classifier via a variant of Newton’s method (known as IRLS) to compute unbalanced classification problems that detect rare events and cannot be solved using previously proposed privacy-preserving optimization algorithms (e.g., based on piecewise-linear approximations of the sigmoid function). Our protocol is efficient as it can be implemented using standard quadruple-precision floating point arithmetic. We report multiple experiments and provide a demo application that implements our algorithm for training a logistic regression model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Privacy Preserving Publishing of Set-valued Data on Hybrid Cloud

Storage as a service has become an important paradigm in cloud computing for its great flexibility and economic savings. However, the development is hampered by data privacy concerns: data owners no longer physically possess the storage of their data. In this work, we study the issue of privacy-preserving set-valued data publishing. Existing data privacypreserving techniques (such as encryption...

متن کامل

INSPIRED: Intention-based Privacy-preserving Permission Model

Mobile operating systems adopt permission systems to protect system integrity and user privacy. In this work, we propose INSPIRED, an intention-aware dynamic mediation system for mobile operating systems with privacy preserving capability. When a security or privacy sensitive behavior is triggered, INSPIRED automatically infers the underlying program intention by examining its runtime environme...

متن کامل

Real-Valued Negative Databases

The negative database (NDB) is the negative representation of original data. Existing work has demonstrated that NDB can be used to preserve privacy and hide information. However, most work about NDB is based on binary representation. In some applications which are naturally descripted in real-valued space, the binary negative database is hard to be applied appropriately. Therefore, the real-va...

متن کامل

Privacy-Preserving Predictive Models for Lung Cancer Survival Analysis

Privacy-preserving data mining (PPDM) is a recent emergent research area that deals with the incorporation of privacy preserving concerns to data mining techniques. We consider a real clinical setting where the data is horizontally distributed among different institutions. Each one of the medical institutions involved in this work provides a database containing a subset of patients. There is re...

متن کامل

Privacy Preserving Stream Analytics: The Marriage of Randomized Response and Approximate Computing

How to preserve users’ privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy guarantees for users, a privacy bound tighter than the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017